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Symmetry Lie algebra of the Dirac oscillator 
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Bruxelles, Bd du Triomphe, B1050 Bruxelles, Belgium 
$ Instituto de Fisica, Universidad Nacional Autonoma de Mtxico, Apdo Postal 20-364, 
01000 Mexico, DF, Mexico 

Received 29 September 1989 

Abstract. Recently the name Dirac oscillator was given to a Dirac equation in which both 
the momenta and the coordinates appear linearly. In the non-relativistic limit, the equation 
satisfied by the large components is that of a standard harmonic oscillator plus a very 
strong spin-orbit coupling term. This equation can be solved exactly, and the spectrum 
presents degeneracies which on occasions are finite and on others infinite. We show that 
the symmetry Lie algebra is s0(4)@s0(3, 1) and find its generators explicitly. 

1. Introduction 

Some twenty years ago, It8 et a1 (1967) introduced a Dirac equation which, besides 
the momenta, is also linear in the coordinates, and can be solved exactly. Cook (1971) 
found its spectrum and showed that it presents rather unusual accidental degeneracies, 
which on occasions are finite and on others are infinite. Recently, the same equation 
was independently rederived by Moshinsky and Szczepaniak (1989), who called it the 
Dirac oscillator since, in the non-relativistic limit, the equation satisfied by the large 
components is that of a standard harmonic oscillator plus a very strong spin-orbit 
coupling term. 

The latter equation was also considered by other authors (Ui and Takeda 1984, 
Balantekin 1985), who obtained it from different considerations and discussed the 
spectrum degeneracies from a supersymmetric viewpoint. Such an approach, however, 
does not lead to a full understanding of the degeneracies. 

The purpose of the present paper is to show that the degeneracies of the Dirac 
oscillator can be explained by a standard symmetry Lie algebra although its generators 
are far from trivial. To construct them, we shall take advantage of the procedures 
recently implemented in the analysis of some simple two-dimensional problems (Mosh- 
insky et a1 1990). More specifically, we shall prove that the symmetry Lie algebra of 
the Dirac oscillator is so(4) Oso(3, l),  where so(4) accounts for the finitely-degenerate 
levels, while so(3 , l )  explains the infinitely-degenerate ones. 

This paper is organised as follows. In section 2 the spectrum and accidental 
degeneracies of the Dirac oscillator Hamiltonian are reviewed. In section 3 the 
conditions to be imposed on the symmetry Lie algebra are listed and the nature of the 
latter suggested by an analysis of the degeneracies. In section 4, ladder operators 
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2264 C Quesne and M Moshinsky 

connecting the degenerate eigenstates are obtained. In section 5, they are used to 
construct the generators of the symmetry Lie algebra and the latter is shown to fulfil 
all the requirements imposed in section 3. Finally, section 6 contains the conclusion. 

2. Spectrum and degeneracies of the Dirac oscillator 

The Dirac oscillator equation is defined by (Moshinsky and Szczepaniak 1989) 

i ( d $ / a t ) = [ c u .  ( p - i r p ) + m p ] +  (2.1) 

in units wherein h = c = mw = 1. Here m is the mass of the particle, w the frequency 
of the oscillator, 

(2.2) 

and U is the vector of Pauli spin matrices (Schiff 1955). 
Let us now express the Dirac wavefunction $ as 

(2.3) 

where $, and 
In the non-relativistic limit, the former satisfies the equation 

are respectively its time-independent large and small components. 

W I  = &*I (2.4) 

where the Hamiltonian is given by 

H=&'-2L*S (2.5) 

in terms of the number of quanta and the orbital and spin angular momentum operators 

A = f (  p z +  2 - 3 )  L = r x p  s = ;U. (2.6) 

The Hamiltonian (2.5) represents a standard harmonic oscillator plus a very strong 
spin-orbit coupling term, as its contribution to the total energy is of the same order 
as the separation between the oscillator levels. 

Since H commutes with the total angular momentum operator 

J = L + S  (2.7) 

its eigenfunctions can be expressed in spherical coordinates as 

CL, = ( r s I ~ ( l t ) j m )  = C (IF, t + m d r )  y,,(e, ( P ) x ~ ( . J )  (2.8) 

where N denotes the eigenvalue of fi and runs over 0, 1 , 2 , .  . . , 1 and j are the orbital 
and total angular momentum quantum numbers respectively, RN,(  r )  is the harmonic 
oscillator radial function (Moshinsky 19691, Y,,(O, cp) is a spherical harmonic, and 
xU(s) a spinor (Rose 1957). 

PU 

The energy spectrum is given by 

= N - [ j (  j -I- I )  - I (  I + I - a] (2.9) 

and is plotted in figure 1. It exhibits degeneracies higher than the degeneracy 2 j  + 1 
coming from the rotational invariance of the Hamiltonian. To study these so-called 
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Figure 1. Energy spectrum of the Dirac oscillator. The abscissa corresponds to the total 
angular momentum and the ordinate to E, , , ( .  The levels are labelled by ( N ,  / ) .  Those 
belonging to 2’8’’ are marked by a cross, while those belonging to %‘- are unmarked. 
The corresponding values of Y or n are indicated in the right column. 

‘accidental’ degeneracies, it is convenient to divide the Hilbert space X, spanned by 
the eigenfunctions (2.8), into two subspaces %‘+’ and % ( - I ,  containing the eigenfunc- 
tions with I = j  + 4 and 1 = j  -4 respectively. 

In @ + I ,  the spectrum is given by 

E ,  = 2 v + 3  (2.10) 

V = f (  N + j  -$) (2.11) 

where 

runs over all non-negative integers. For any fixed value of v, the corresponding level 
is made of sublevels with j = i, 2 ,  . , . , v +f. Its degeneracy is therefore finite and equal 
to 

U + l / 2  

j = I / 2  
d(v) = c ( 2 j +  1)  = ( U +  l ) ( v + 2 ) .  

We shall denote the degenerate eigenstates by 

where on the left-hand side we use a round bracket. 
I vjm ) = 12 v - j + $( j + 4, f ) j m )  

(2.12) 

(2.13) 
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In 2t-', the spectrum is given by 

E ,  = 2 n  

where the radial quantum number 

(2.14) 

n = ' ( ~ - j + f )  2 (2.15) 

runs as usual over all non-negative integers. Any level is now made of sublevels with 
j = i, ;, $, . . . , and its degeneracy is therefore infinite. We shall denote the degenerate 
eigenstates by 

(2.16) I njm 3 = 12n + j - f (  j - f , f )jm) 

where on the left-hand side we use a square bracket. 

Dirac oscillator can be explained by the existence of a symmetry Lie algebra. 
In the following sections we shall prove that the accidental degeneracies of the 

3. Symmetry Lie algebra 

The conditions to be imposed on the symmetry Lie algebra for a Hamiltonian with 
accidental degeneracy were recently reviewed by Moshinsky et a1 (1990). In principle, 
the procedure for finding the symmetry Lie algebra goes as follows. 

(i)  Find ladder operators connecting all the eigenstates with a given energy. 
(ii) Consider in addition the operators defined by the commutators of the ladder 

operators. If, together with the latter, they form a Lie algebra, then we have obtained 
a good candidate for the symmetry Lie algebra of the problem. If they do not, we 
may try to renormalise the ladder operators in such a way that closure is achieved, as 
is done, for instance, in the case of the hydrogen atom Hamiltonian (Fock 1935, 
Bargmann 1936). 

(iii) Once a Lie algebra has been constructed, we expect that the set of eigenstates 
with given energy provides a basis for a definite, energy-dependent irreducible rep- 
resentation (irrep) of this Lie algebra. In particular, the dimension of the irreps should 
agree with the level degeneracies. 

(iv) The Hamiltonian of the problem should be related to the Casimir operator(s) 
of the Lie algebra. 

In practice, however, even in very simple problems of accidental degeneracy, a 
great variety of approaches need to be followed in the search for a symmetry Lie 
algebra (Moshinsky et a1 1990). In particular, conditions (iii) and (iv) above do not 
necessarily follow from the fulfilment of conditions (i)  and (ii). The construction of 
a Lie algebra satisfying all four requirements may sometimes demand that rather 
complicated combinations of renormalised ladder operators be considered. In such a 
case, it often proves convenient to start by guessing the nature of the Lie algebra from 
the dimension of its irreps, as given by the level degeneracies; thence condition (iii) 
is automatically satisfied. 

In the present problem, the explanation of the finite degeneracies in %(+I and of 
the infinite ones in %(-) requires both a compact and a non-compact algebra. It is 
indeed well known (Wybourne 1974) that all the unitary irreps of a compact (non- 
compact) Lie algebra are finite (infinite) dimensional (apart from the trivial one- 
dimensional irrep). If both algebras are not to interfere, their generators must act 
exclusively in 3@+) or in 3@-),  respectively. Hence this suggests looking for the direct 
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sum 2‘+’@2(-) of a compact and a non-compact algebra. This type of separation 
reminds us what happens for the hydrogen atom Hamiltonian, whose symmetry Lie 
algebra is so(4)0e(3)0so(3 ,1) .  In this case, the orthogonal so(4), the euclidian e(3), 
and the pseudo-orthogonal so(3 , l )  algebras respectively act in the spaces of negative-, 
zero-, or positive-energy states. 

To ensure that the generators of Ti+) (2’-’) do not act in %(-’ (%(+)), we must 
use restricted operators, or, in other words, operators of the form P(+’OP(+) 
(P(-’OP(-’) ,  where P‘+) (P(-’) is the projection operator on %“+’ (%(-’). Such projec- 
tion operators can be easily constructed in terms of the operators 

(3.1) i= [L2+$]’/2-f 

p(+J= i-j+f p ( - )  = j -  i+’ 

j = [ J 2  + $1 ’/ 2 - f 

whose eigenvalues are 1 and j respectively, and they are given by 

(3.2) 2 .  

Let us now turn our attention to the determination of the symmetry Lie subalgebras 
2(*). In %‘(+I, the level degeneracies d (  v), given in (2.12), coincide with the dimensions 
of the so(4) (spin) irreps characterised by the Young pattern labels [ pq], where p = v + f , 
and q = f (Biedenharn 1961). Moreover, since the so(3) (or more exactly su(2)) content 
of [pq] is given by 191, Iql+ 1, .  . . , p ,  it corresponds to the total angular momenta of 
the degenerate sublevels. Hence, this suggests identifying 2“’ with so(4), the eigen- 
states (2.13) belonging to %‘+) with the basis states of [ v + f ,  51, and the generators of 
the so(3)=su(2) subalgebra with the components of J restricted to %‘(+I. We shall 
denote the latter by MI, i.e. 

MI = P(+’J,P‘+’ (3.3) 

and the remaining so(4) generators by A,, where i = 1,2,3.  These Hermitian operators 
satisfy the commutation relations 

M,l=[A!,A,l=iEykMk [ , AJ 1 = i&VkAk 9 (3.4) 

In %‘(-I, the level degeneracies being infinite, there are many possibilities for the 
symmetry Lie algebra (Moshinsky and Patera 1975). However, to get results closely 
resembling those obtained for %’(+’, 2‘-) = so(3 , l )  seems the most appropriate one. 
The so(3, 1) algebra indeed has some ladder irreps containing the infinite sequence of 
so(3) 5 su(2) irreps f ,  $, i, . . . , and characterised by generalised Young pattern labels 
[ pq], where p = -1 +in,  q = 4, and n E N, or, in Naimark’s notations, by some numbers 
( k o ,  c), where k o = f ,  and c = -in (Naimark 1964, Bohm 1979). Hence, this suggests 
identifying the eigenstates (2.16) belonging to ,%-) with the basis states of [-1 +in, $1, 
and the generators of the so(3) = su(2) subalgebra of so(3 , l )  with the components of 
J restricted to ,%-I. We shall denote the latter by m, ,  i.e. 

(3.5) 
and the remaining so(3, 1) generators by a,,  where i = 1,2,3.  These Hermitian operators 
satisfy the commutation relations 

m, = p ( - )  ~ , p ( - )  

[mi, mj1 = - [a t ,  4 1  = ieijkmk a , l = i & ~ k a k  (3.6) 
which can be obtained from (3.4) by replacing MI by m, ,  and A, by -ia,. Moreover, 
the operators m, and a, commute with the so(4) generators MI and A,: 

(3.7) [MI, m,I = [MI, a,] = [A,, 4 1  = [ A , ,  a,] = 0. 
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Since the total angular momentum components J, may be written as 

J, = Mi + mi (3.8) 
the su(2) algebra spanned by these operators is actually a subalgebra of the proposed 
symmetry Lie algebra 

S0(4)@S0(3,1) 2 SU(2) (3.9) 
as it should be. 

It remains to construct the operators A and a. According to rule (i)  above, we 
should first derive ladder operators connecting the degenerate states associated with 
definite eigenvalues of H. Such a construction is carried out in the next section. 

4. Ladder operators connecting the degenerate eigenstates of the Dirac oscillator 

Apart from an irrelevant additive con:tan;, the DjracAoscillator Hamiltonian (2.5) has 
the same spectrum as the operators N + J and N - J in X(+) and X(-), respectively. 
This suggests first considering the auxiliary, spin-independent Hamiltonians 

H + = A + i  H - = A - i  (4.1) 

WW= ~ ~ ~ ( r ) y ~ ~ ( e ,  CP) (4.2) 

whose eigenfunctions can be expressed in spherical coordinates as 

and correspond to the eigenvalues N + I and N - I respectively. In (4.2), RNl(  r )  and 
y,(B, cp) have the same meaning as in (2.8). 

Since the auxiliary HIamiltonians H, are but the three-dimensional counterpart of 
the Hamiltonians A * l M I ,  recently studied by Moshinsky er a1 (1990), and where fi 
and are the number operator and the angular momentum of the two-dimensional 
oscillator, we can take advantage of the experience gained in these simpler problems 
to construct ladder operators for H,. The latter should connect an arbitrary state 
I Nlp)  with a degenerate one, either IN + 1,1 T 1, p’)  or IN - 1, I f  1, p’). 

Let us introduce the harmonic oscillator creation and annihilation operators, whose 
spherical components are defined by 

7, = 2-’/’(x, - ipq) 5, = (-1),5-, = ( - ~ ) y ~ - ~ ) +  q = 1,0, -1 (4.3) 
respectively. By using the values of their reduced matrix elements between two states 
of type (4.2) (Moshinsky 1969) and su(2) tensor calculus (Rose 1957), it is straightfor- 
ward to show that the operators 

F , = T q ( f i - i ) - ( r l ’ r l ) 5 ,  

f,= T q ( f i + i + l ) - ( r l ’ 9 ) 5 q  

G, = (- 1 ) q  ( F-,)’ = ( A - IC).& - T~ (6 * 5 )  (4.4) 

(4.5) 
where q = 1, 0, -1, are ladder operators for H+ and H- respectively. Their reduced 
matrix elements between any two eigenstates of these Hamiltonians are indeed given 

and 

g, = (-l)q(.f-q)+ = N + i +  1k-q - T J 5 ’  5 )  

by 
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and 

Let us now go back to the Dirac oscillator Hamiltonian (2 .5 ) .  By using definitions 
(2.13) and (2.16), and su(2) tensor calculus again, we observe that in %‘e(+) ( % ‘ - I )  the 
operators F, and G, (f, and g, )  can only connect an eigenstate 1 vjm) ( 1  vjm]) of this 
Hamiltonian with a degenerate eigenstate 1 v, j - 1, m + q )  or I U, j + 1, rn + q ) (  I n, j + 
1, m + q ]  or I n , j - l ,  m+q])  since 

(4.8) 

and 

We therefore conclude that F, and G, ( f ,  and 8,) are ladder operators for the Dirac 
oscillator Hamiltonian in 2@+’ (%‘(-I). 

In the next section, from these ladder operators, we shall construct the generators 
A, and a,  of the Dirac oscillator symmetry Lie algebra. Although, in addition to (4.8) 
and (4.9), the ladder operators also have non-vanishing matrix elements between some 
eigenstates of H belonging to 2@+’ and some eigenstates belonging to %’(-), this does 
not matter because the projection operators to be used in the next section will cancel 
them. 

5. Construction of the symmetry Lie algebra generators A,, and a, 

As explained in section 3, the Dirac oscillator eigenstates belonging to Wf’, and 
corresponding to a given value of v, should carry an so(4) irrep [ v + f  ,;I. The reduced 
matrix elements of the so(4) generators A, between two basis states of this irrep, 
characterised by a given value of the angular momentum, are given by (Biedenharn 
1961) 

( 2 ~ + 2 j + 3 ) ( 2 ~ - 2 j + 3 ) ( 2 j + l )  
i 

- 8 . .  - 
J ’ , J - ~  

Comparison with equation (4.8) and with the relation (Rose 1957) 

(vj‘[I~[lvj) = ajf,j[j(j+ I ) ] ” ~  (5 .2)  
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suggests the following form for A,: 

A, = P‘”a[(j+2)”(H+2j+2)”’F,  + HJ-’J,  

+ G4( H + 2 j  + 2)’I2(j  + 2)-I]P‘+’ (5.3) 

since j, j( j + l ) ,  and E , ,  given in (2.10), are respectively the eigenvalues of j ,  J 2  and H. 
On the other hand, the Dirac oscillator eigenstates belonging to %’-’, and corre- 

sponding to a given value of n, should carry an so (3 , l )  irrep [ -1  +in,  i]. The reduced 
matrix elements of the so(3, 1 )  generators a4 between two basis states of this irrep, 
characterised by a given value of the angular momentum, can be obtained by analytic 
continuation of the corresponding result for the so(4) generators A, and the so(4) 
irrep [pq] (Biedenharn 1961), i.e. by making the substitutions A9+ -ia9, p +  -1  + i n ,  
4 + 4. They are given by 

Note that the phase discrepancy with respect to the corresponding Naimark result 
(Naimark 1964, Bohm 1979) comes from a different phase convention for the irrep 
basis states. Comparison of (5.4) with equation (4.9) and with a relation similar to 
(5.2) suggests the following form for a,: 

a = pc-U 
9 4{(j - l)-’[(  H 2  + 4j2) / (  H + 2j)]”2f, - HJ-’J9 

+ g, [ (H2+4j2) / (H +2j)]1’2( .?-  l )-’}P(-) ( 5 . 5 )  

where we have now used the fact that j, j(j+ 1 )  and E,,  given in (2.14), are respectively 
the eigenvalues of j ,  J 2  and H. 

By construction, the set of operators M, m, A and a, defined in (3 .3) ,  (3.5), (5 .3 )  
and (5 .5)  respectively, obey the commutation relations (3.4), (3.6) and (3 .7 ) .  Hence 
we did succeed in constructing a Lie algebra fulfilling the first three requirements of 
section 3. It remains to check that the fourth condition is also satisfied. 

The so(4) algebra has two independent Casimir operators (Biedenharn 1961) 

c , = M , + A ,  C2= M .  A. (5.6) 

(C,) = ( Y + $)( v +$) + a  = a[ E ;  - 31 (5.7)  

This shows that C ,  and C2 can be rewritten in terms of the restriction of the Hamiltonian 

(5.8) 

Their eigenvalues corresponding to the irrep [ v + i, i] are given by 

(C,) =$( v+{) = $ E , .  

to % e ( + ) ,  

H ‘+’  = p(+)Hp‘+)  

as 

Cl = $[ (H‘”)’  - 31 c2 = + H ‘ + ’ .  (5.9) 
The so(3, 1) algebra also has two independent Casimir operators (Naimark 1964, 

c, = m 2 -  a’ c2 = m * a. (5.10) 
Bohm 1979) 
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Their eigenvalues corresponding to the irrep [-1 +in, i] can be obtained by analytic 
continuation of those of C ,  and C ,  for the so(4) irrep [ p q ]  and are given by 

( c , )  = -(n2+ 1) +$= - $ [ E ’ ,  +3] (c,)  = -fn = -1 4En. (5.11) 

We conclude that c ,  and c2 can be rewritten in terms of the restriction of the Hamiltonian 

f f - 1  = P(- )HP( - ’  (5.12) 

to %(-I, 

as 
-AH(-) 

C ,  = -i[(H‘-’)2+3] 2 -  4 (5.13) 

thus proving that all four requirements of section 3 are satisfied. Note that, apart from 
the substitution of H(-) for H(+), equation (5.13) only differs from (5.9) by some sign 
changes. 

6. Conclusion 

In the present paper, we did show that the symmetry Lie algebra of the Dirac oscillator 
is the direct sum algebra so(4)@so(3,1). This was suggested by a study of the spectrum 
degeneracies, but the main problem was actually to explicitly obtain the generators of 
the algebra. This was done in section 5 by u$ng as an intermediate step the ladder 
operators of the auxiliary Hamiltonians fi f L. 

The problem of these aYxiliaTy Hamiltonians is quite similar to that of their 
two-dimensional analogues N f IMl, which was considered in Moshinsky et a1 (1990) 
to show that the determination of the ladder operators for a Hamiltonian with accidental 
degeneracy is not sufficient to get the generators of its symmetry Lie algebra. The 
procedure followed in the latter reference to construct the generators served as a 
framework for the more complex case of the Dirac oscillator Hamiltonian that is 
analysed in the present paper. 

The techniques developed in this work and in the previous one (Moshinsky et a1 
1990) seem to be generalisable to many other problems with accidental degeneracy. 
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